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Entropy-based analysis of the number partitioning problem
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In this paper we apply the multicanonical method of statistical physics on the number partitioning problem
~NPP!. This problem is a basicNP-hard problem from computer science, and can be formulated as a spin-glass
problem. We compute the spectral degeneracy, which gives us information about the number of solutions for
a given costE and cardinality differencem. We also study an extension of this problem forQ partitions. We
show that a fundamental difference on the spectral degeneracy of the generalized (Q.2) NPP exists, which
could explain why it is so difficult to find good solutions for this case.
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I. INTRODUCTION

The use of statistical mechanics tools to understand
main ideas underlying problems as diverse as biological,
cial, and economic systems has become a common task,
theoretically and computationally@1,2#. Recently, these tools
have been applied to computer science problems@3–11#, not
intending to solve them exactly, but rather to understa
their complexity and the underlying mechanisms genera
such complex behavior. In this Rapid Communication
focus on the number partitioning problem, a fundamen
problem in theoretical computer science@12#. Our aim is to
apply the multicanonical method~MUCA! @13# of statistical
physics to this problem and study the behavior of nea
optimal solutions. This information is relevant for the dev
opment of new algorithms which try to find optimal sol
tions.

In the next section we discuss the number partition
problem and its formulation as a spin-glass problem.
introduce the multipartitioning problem and map it onto
Q-states Potts model. In Sec. III we present the multicano
cal method and apply it to our problem. In Sec. IV we d
cuss our results both for the classical and for the multipa
tioning problem.

II. NUMBER PARTITIONING PROBLEM

The number partitioning problem~NPP! is, according to
Garey and Johnson@12#, one of the six basic computer sc
ence problems. Given a setA5$a1 ,a2 ,a3 ,a4 , . . . ,aN% with
N integer numbers, the traditional NPP consists of partiti
ing the setA into two disjoint setsA1 andA2 such that the
difference

E5U (
aiPA1

ai2 (
aiPA2

aiU ~1!

is minimized. If there areN1 numbers in the setA1 andN2
numbers in the setA2, then
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m5uN12N2u ~2!

is called thecardinality differenceof the set.
On the unbalanced NPP the only condition is to minim

the cost function@Eq. ~1!# without any restriction to the value
of m. The problem of finding good solutions~whenever they
exist! for the unbalanced~nonfixedm) NPP was essentially
solved by the deterministic Karmarkar-Karp-Korf comple
algorithm @14,15#. This algorithm was generalized b
Mertens for the balanced (m fixed! case@16#. Some recent
papers addressed the possibility of carrying a statist
analysis of this problem@5,6,8–11#, obtaining interesting re-
sults, such as: the existence of an easy-to-hard transition~ex-
plained below! @5#, the non-self-averaging property of th
ground state energy@6#, the analytical derivation of the lowe
bounds for the energy as a function of the cardinality diff
ence@8,11#, and the equivalence of the NPP to a random c
problem@10#. Certainly one of the most interesting featur
of the NPP is the existence of an easy-to-hard transition.
N independent and identically distributed~i.i.d.! random
b-bit numbersai , the computational effort needed to obta
a solution grows exponentially withN for N&b and polyno-
mially for N@b. In this sense, there is a ‘‘phase transition
in the system@5,11#. For that purpose, a mapping of the NP
problem onto a spin-glass model was proposed: associa
each numberai a new variablesi ~which we call ‘‘spin’’!
such that ifaiPA1 then si521, otherwisesi511. With
this mapping, we can search for a configuration of sp
s1 , . . . ,sN , which minimizes the cost function~or energy!

E5U(
i 51

N

siaiU ~3!

or its square,

ESG5(
i j

N

Ji j sisj , ~4!

with Ji j 5aiaj , which we recognize as an infinite-rang
spin-glass Hamiltonian. We can also write the cardina
difference in a ‘‘magnetizationlike’’ way,
©2001 The American Physical Society06-1
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m5
1

NU(
i 51

N

siU. ~5!

Finding an optimal solution for the number partitionin
problem consists of finding the spin configuration of t
ground state on the spin-glass problem. This is a very d
cult task, mainly because of the great number of metast
states separated by a hierarchy of increasingly high en
barriers@17#.

An even more difficult problem is multipartitioning. Thi
problem consists of partitioning the set of numbersA into Q
disjoint sets. This problem has several applications@18,19#,
such as the division ofN different jobs~computer programs!
into Q computers. As far as we know, there is no theoreti
study of the NPP forQ.2.

We can map this problem onto a Potts spin-glass by
signing to each numberai a spinsi that can assume intege
values from 1 toQ. These spin magnitudes represent the
to which the number belongs. Hence, the energy can be w
ten as

E5(
i 51

Q

(
j . i

Q

ue i2e j u, ~6!

wheree i5(k51
N akd (sk ,i ) is the sum of the elements in the s

i. In the same way we define the magnetization as

m5
1

N

(
i 51

Q

(
j . i

Q

uni2nj u

Q21
, ~7!

whereni5(k51
N d (sk ,i ) is the number of elements in the seti.

Clearly, this problem is much more complex than the tra
tional NPP (Q52).

In the next section we show that the multicanonic
method can be used to determine the spectral degenera
the problem, i.e., the number of solutionsg(E,m) that have
a given energyE and magnetizationm. In the statistical me-
chanics sense, this completely characterizes the prob
since the ~dimensionless! entropy is given byS(E,m)
5 ln g(E,m).

III. MULTICANONICAL METHOD
„ENTROPIC SAMPLING …

The multicanonical method was introduced in 1991
Berg and Neuhaus@13#, and the basic idea of this method
to sample microconfigurations of a given system by perfo
ing a biased random walk~RW! in the configuration space
which leads to another unbiased random walk~i.e., with uni-
form distribution! along the energy axis. This walk mu
have a visiting probability of each energy levelE which is
inversely proportional tog(E), the quoted spectral degen
eracy. If one can measure the transition probabilities from
energy levelE to all other energy levels, one is able to obta
g(E). The multicanonical method has been shown to be v
efficient in obtaining satisfactory results forg(E) in a large
variety of problems such as evolutionary problems@20#,
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phase equilibrium in binary lipid bilayer@21#, and optimiza-
tion problems@22# ~for reviews of the method, see@23#!. The
entropic sampling method~ESM! @24#, which we will use
throughout this paper, has been proven to be an equiva
formulation of MUCA @25#. Here we are interested in th
multiparametric formulation of the multicanonical metho
since we must obtain the spectral degeneracyg(E,m) @26# as
a function of two parametersE andm. Let E(X) andm(X)
be the energy and magnetization associated to the micro
X, the transition probability between two statesXi andXf is
given by

t~Xi ,Xf !5e2[S(Ef ,mf )2S(Ei ,mi )]5
g~Ei ,mi !

g~Ef ,mf !
, ~8!

where S(E,m)5 ln g(E,m) is the entropy,Ei5E(Xi) @Ef
5E(Xf)# is the energy of the initial@final# state, mi
5m(Xi) @mf5m(Xf)# is the magnetization of the initial~fi-
nal! state, andg(E,m) is the spectral degeneracy. The tra
sitional probability@Eq. ~8!# satisfies a detailed balance equ
tion and leads to a distribution of probabilities where a st
is sampled with probability}1/g(E,m). The successive visi-
tations along the energy axis follow a uniform distributio
but unfortunatelyg(E,m) is not knowna priori. One way of
obtainingg(E,m) is to construct it iteratively, such as in th
entropic sampling method proposed by Lee@24#.

For a detailed description of the method, see Re
@24,26,27#. We have applied this algorithm to the problem
bi- and multipartitioning in order to obtain the entrop
S(E,m), which is shown for the case of bipartitioning in Fig
1. These results were obtained for a single instance~disorder
realization! of 100 integer numbers chosen randomly b
tween 0 and 1010. According to the characterization o
Mertens@5# for these numerical values, the problem is on t
easy side of the easy-to-hard phase transition, where an
ponential number of perfect solutions exist. We have p
formed in our simulation 23107 attempts to change the sta
of the system@Eq. ~8!#. All results shown are typical ones
Let us stress that, after obtaining the entropy of the sys
through extensive simulations, all thermodynamic avera

FIG. 1. Typical entropy curve as a function of cost~energy! and
cardinality difference~magnetization! for the case of bipartitioning.
Here the entropy in computed for a single instance of 100 numb
chosen randomly between 0 and 1010. The energy is normalized by
the largest possible value,Emax51012.
6-2
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for different cardinalitiesm can be obtained with no need fo
any further computer effort.

In the next section we are going to analyze this entropy
order to recover well-known results concerning bounds
the (E,m) curve for nearly optimal solutions. Throug
analysis of the entropy of the multipartitioning problem
will be clear that the change of complexity of this proble
for Q.2 is associated with fundamental changes of the
tropy curve.

IV. NUMERICAL RESULTS

Through the replica trick, Ferreira and Fontanari@8# have
obtained analytical estimates for the average lower boun
the energyE as a function of magnetization~cardinality dif-
ference! m. By means of a simpler analysis, Mertens@11# has
calculated lower and upper bounds for the energyE(m). In
Fig. 2 we show our numerical results along with analytic
predictions@8,11# for both lower and upper bounds ofE(m).
This is done by collapsing thez axis of Fig. 1 on thex,y
plane @here, the (E,m) plane#. In order to compare our re
sults with the theoretical ones, the energy is normalized
propriately such that atm51, e850.5. It is important to note
that our numerical result concerns only one instan
whereas the analytical results involve an average over
infinite number of instances.

In computer science one is mainly interested in optim
solutions, that is, the information contained on the fi
‘‘slice’’ of the S(E,m) surface, theS(0,m) plane. In Fig. 3
we showS(e,m), wheree is our numerical tolerance, whic
we chose to be (EMAX2EMIN)/1024.

One interesting feature we have observed numericall
that the maximum number of solutions does not occur
m50; it is easier to find solutions where the number
elements in each set is not exactly equal. This feature is
characteristic of a particular instance.

Now we show our results for the multipartitioning pro

FIG. 2. Collapse of all entropiesS(e,m) on the (e,m) plane,
evidencing the upper and lower bounds fore as a function of the
cardinality differencem. Again, e5E/Emax. The dashed lines are
theoretical predictions for upper and lower bounds of the ene
Typical results for a single instance withN5100 numbers.
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lem. If we look at the number of solutionsg(E)
5(mg(E,m) @or the entropyS(E)5 ln g(E)# for different
cardinalities, we observe a fundamental difference betw
the Q52 andQ.2 results~in Fig. 4 we show normalized
entropies!. For theQ52 case, we see that the maximum
the entropy lies nearE50.

It is known that random movements in a statistical syst
leads it, on average, to the region of maximum entro
where the number of accessible states is maximum. Since
maximum of the entropy lies approximately atE50 on the

y.

FIG. 3. Entropy of anN5100 instance as a function of th
cardinality differencem for nearly optimal solutions. The maximum
number of solutions does not correspond to an equipartition of
set, but to two subsets withN/221 andN/211 numbers, respec
tively. This result is not characteristic of a single instance~disorder
realization!.

FIG. 4. Normalized entropy of the system as a function of
energye for different numbers of partitionsQ, evidencing the dif-
ferences in their maximum position. We consider an instance w
120 numbers. The fundamental difference between bi- and m
partitioning is that for the latter the maximum of the entropy de
ates from the origin, which turns out to be a minimum, making
more difficult to find nearly optimal solutions. The thin-dashed li
is the normalized histogram of visits for a random spin-flip alg
rithm (Q510).
6-3
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NPP, any algorithm which performs random movements w
find reasonable solutions for such problem.

For Q.2 we have a completely different scenario. Th
maximum of the entropy is not nearE50, indeed,E50 is a
minimum and the number of solutions withE'0 decreases,
at least, exponentially withQ. Differently from the Q52
case, an algorithm based on random movements would d
the system away from the ground state. In order to illustra
this fact, we also show in Fig. 4 the normalized histogram
visits for theQ510 case, where 2.43108 random flips were
made on the spinss. The effects of this behavior of the
entropy on the construction of new algorithms should
taken into account. Based on the traditional differenci
scheme@14–16# we can say that, if the number of nearl
optimal solutions increases exponentially asE→0, it is al-
ways possible to find better and better solutions, the com
tational time spent on the search being the only barrier. F
theQ.2 NPP this kind of procedure does not seem to wo
so efficiently, since the number of solutionsdecreasesexpo-
nentially for E→0.

The approximate values of the entropyS(E)5 ln g(E) we
have found for E'0 ~considering a window of sizee
5EMAX/1024) were 77.76, 129.04, 150.45, 187.03, a
484.87, forQ52, 3, 4, 5, and 10, respectively. ForQ52 it is
possible to calculate analytically the value ofS(0) once we
know ^a2& ~see Refs.@5,11#!. The expected value for the
particular instance considered as an example isS(0)
577.06.
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V. CONCLUSIONS

We showed in this paper that the multicanonical meth
for obtaining thermodynamic averages of statistical syste
can provide a tool for assessing the complexity of compu
science problems, such as the number partitioning prob
~NPP!. This problem is one of the six basic computer scien
problems, according to Garey and Johnson@12#, and can be
formulated as a spin-glass problem. Based on this ana
we proposed a statistical mechanics method for compu
the spectral degeneracy of the NPP problem which gives
information about the number of solutions for a given cosE
and cardinality differencem. We have studied an extensio
of this problem forQ partitions and observed a fundamen
difference between the classical (Q52) and the generalized
(Q.2) NPP, which explains why it is so difficult to find
good solutions for the latter case. This information can
very useful in the construction of new algorithms.
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