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In this paper we apply the multicanonical method of statistical physics on the number partitioning problem
(NPP. This problem is a basid P-hard problem from computer science, and can be formulated as a spin-glass
problem. We compute the spectral degeneracy, which gives us information about the number of solutions for
a given cosE and cardinality differencen. We also study an extension of this problem €@partitions. We
show that a fundamental difference on the spectral degeneracy of the gener@iz@J (NPP exists, which
could explain why it is so difficult to find good solutions for this case.
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I. INTRODUCTION m=|N;— N,| 2

The use of statistical mechanics tools to understand thg cajled thecardinality differenceof the set.

main ideas underlying problems as diverse as biological, SO- on the unbalanced NPP the only condition is to minimize
cial, and economic systems has become a common task, bogie cost functiodEqg. (1)] without any restriction to the value
theoretically anc_i computatlonal[y,_Z]. Recently, these tools  5f m. The problem of finding good solutiorf@henever they
have been applied to computer science problg8raLl], not  exisp for the unbalancednonfixedm) NPP was essentially
intending to solve them exactly, but rather to understand|yed by the deterministic Karmarkar-Karp-Korf complete
their complexity and the underlying mechanisms generatinggorithm [14,15. This algorithm was generalized by
such complex behavior. In .thi_s Rapid Communication Wepertens for the balancedn( fixed) case[16]. Some recent
focus on the number partitioning problem, a fundamentalyapers addressed the possibility of carrying a statistical
problem in theoretical computer sciend®]. Our aimis to  gnalysis of this problerfs,6,8—11, obtaining interesting re-
apply the multicanonical metho®UCA) [13] of statistical ~ gits. such as: the existence of an easy-to-hard trangéion
physics to this problem and study the behavior of ”ea”yplained below [5], the non-self-averaging property of the
optimal solutions. This information is relevant for the deve"ground state enerd], the analytical derivation of the lower
opment of new algorithms which try to find optimal solu- j,5nds for the energy as a function of the cardinality differ-
tions. ) ) _. . ence[8,11], and the equivalence of the NPP to a random cost
In the next section we discuss the number partitioningy oplem|[10]. Certainly one of the most interesting features
problem and its formulation as a spin-glass problem. Weys the NPP is the existence of an easy-to-hard transition. For
introduce the multipartitioning problem and map it onto ay independent and identically distribute@i.d.) random
Q-states Potts model. In Sec. Il we present the multicanonip,_pit numbersa; , the computational effort needed to obtain

cal method and apply it to our problem. In Sec. IV we dis- 5 soution grows exponentially with for N<b and polyno-
cuss our results both for the classical and for the multlpartl-mi‘,:l"y for N>b. In this sense, there is a “phase transition”

tioning problem. in the systenj5,11]. For that purpose, a mapping of the NPP
problem onto a spin-glass model was proposed: associate to
[l. NUMBER PARTITIONING PROBLEM each number; a new variables; (which we call “spin”)

such that ifa;e A; thens,=—1, otherwises;=+ 1. With
this mapping, we can search for a configuration of spins
..,Sn, Which minimizes the cost functiofor energy

The number partitioning probleNPP is, according to
Garey and Johnsgi2], one of the six basic computer sci-
ence problems. Given a s&t={a,,a,,az,as, . .. ,ay} with St -
N integer numbers, the traditional NPP consists of partition-

N
ing the setA into two disjoint setsA; and A, such that the
di?ference J ' ’ E= Z‘l Sid )
E=| > a- 2 a (1)  orits square,
aiEAl aiEA2
N
is minimized. If there ardN; numbers in the seA; andN, ESG:iZj Jijsis;, (4)

numbers in the sed,, then
with J;j=a;a;, which we recognize as an infinite-range
*Email address: arlima@if.uff.br spin-glass Hamiltonian. We can also write the cardinality
"Email address: marcio@if.uff.br difference in a “magnetizationlike” way,
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N
1
m=—|> s|. (5)
N|=1

Finding an optimal solution for the number partitioning sg
problem consists of finding the spin configuration of the
ground state on the spin-glass problem. This is a very diffi-
cult task, mainly because of the great number of metastable 0
states separated by a hierarchy of increasingly high energ'
barriers[17].

An even more difficult problem is multipartitioning. This
problem consists of partitioning the set of numbArsito Q
disjoint sets. This problem has several applicatipi 19,
such as the division dfl different jobs(computer programs
into Q computers. As far as we know, there is no theoretical gig. 1. Typical entropy curve as a function of céenergy and
study of the NPP foQ>2. cardinality differencémagnetizationfor the case of bipartitioning.

We can map this problem onto a Potts spin-glass by as{ere the entropy in computed for a single instance of 100 numbers
signing to each numbeg; a spins; that can assume integer chosen randomly between 0 and'40rhe energy is normalized by
values from 1 toQ. These spin magnitudes represent the sethe largest possible valug,,a,=10".
to which the number belongs. Hence, the energy can be writ-
ten as phase equilibrium in binary lipid bilayd21], and optimiza-

tion problemdq22] (for reviews of the method, s¢23]). The
Q entropic sampling metho(ESM) [24], which we will use
2>i €~ €l (6) throughout this paper, has been proven to be an equivalent
. formulation of MUCA [25]. Here we are interested in the
WhereEiZEEzlaké(sk,i) is the sum of the elements in the set Multiparametric formulation of the multicanonical method,
since we must obtain the spectral degenegd, m) [26] as
a function of two parameters andm. Let E(X) andm(X)

0.60

E=2,

Q
=1

i. In the same way we define the magnetization as

Q Q be the energy and magnetization associated to the microstate
E E |ni—nj| X, the transition probability between two statésand X; is
m= e @) given by
N Q-1 '
g(E;,m;)

(X, X¢) =e " [SErm)=SE M) = (8)

wheren; = Eleﬁ(sk,i) is the number of elements in the $et
Clearly, this problem is much more complex than the tradi- _
tional NPP Q=2). where S(E,m)=Ing(E,m) is the entropy,E;=E(X;) [E;

In the next section we show that the multicanonical=E(X)] is the energy of the initial[final] state, m
method can be used to determine the spectral degeneracy SfM(X;) [Ms=m(X;)] is the magnetization of the initiafi-
the problem, i.e., the number of solutiogéE,m) that have ~Na) state, andg(E,m) is the spectral degeneracy. The tran-
a given energ\E and magnetizatiom. In the statistical me-  sitional probability Eq. (8)] satisfies a detailed balance equa-
chanics sense, this completely characterizes the problerﬂPn and leads to a distribution of probabilities where a state
since the (dimensionless entropy is given by S(E,m) is sampled with probability 1/g(E,m). The successive visi-

g(Ef,my)’

= tations along the energy axis follow a uniform distribution,
n g(gE,m). 4 o
but unfortunatelyg(E,m) is not knowna priori. One way of
Ill. MULTICANONICAL METHOD obtaini'ngg(E,m) is to construct it iteratively, such as in the
(ENTROPIC SAMPLING ) entropic sampling method proposed by Led].

For a detailed description of the method, see Refs.

The multicanonical method was introduced in 1991 by[24,26,27. We have applied this algorithm to the problem of
Berg and Neuhaul 3], and the basic idea of this method is bi- and multipartitioning in order to obtain the entropy
to sample microconfigurations of a given system by perform-S(E,m), which is shown for the case of bipartitioning in Fig.
ing a biased random wallRW) in the configuration space, 1. These results were obtained for a single instad®rder
which leads to another unbiased random wakx, with uni-  realization of 100 integer numbers chosen randomly be-
form distribution along the energy axis. This walk must tween 0 and 1¥. According to the characterization of
have a visiting probability of each energy levelwhich is  Merteng[5] for these numerical values, the problem is on the
inversely proportional ta@(E), the quoted spectral degen- easy side of the easy-to-hard phase transition, where an ex-
eracy. If one can measure the transition probabilities from aponential number of perfect solutions exist. We have per-
energy leveE to all other energy levels, one is able to obtain formed in our simulation X 10’ attempts to change the state
g(E). The multicanonical method has been shown to be veryf the systen{Eq. (8)]. All results shown are typical ones.
efficient in obtaining satisfactory results fg(E) in a large  Let us stress that, after obtaining the entropy of the system
variety of problems such as evolutionary problefi2®],  through extensive simulations, all thermodynamic averages

020106-2



RAPID COMMUNICATIONS

ENTROPY-BASED ANALYSIS OF THE NUMBR . . . PHYSICAL REVIEW E 63 020106R)
0.5 o " | g lll,!/
0.4 —u
L I 490
0.3
. €
7]
0.2
29.0
0.1
0o 02 04 06 0.8 1 9.

.0 L L L
0.00 0.10 0.20 0.30 0.40
m

_FIG‘_Z' Collapse of all entropieS(e,m) on the @’m) plane, FIG. 3. Entropy of anN=100 instance as a function of the

ewdgnqng the upper and Igwer bounds &as a funct|or? of the cardinality differencen for nearly optimal solutions. The maximum

cardlna_llty dlffer_en_cem. Again, e=E/Emay. The dashed lines are number of solutions does not correspond to an equipartition of the

theqretlcal predlctlons_ for upper and I_ower bounds of the eNer%Ysat but to two subsets with/2— 1 andN/2+1 numbers, respec-

Typical results for a single instance with=100 numbers. tively. This result is not characteristic of a single instafdisorder
realizatior).

for different cardinalitiesn can be obtained with no need for

any further computer effort. lem. If we look at the number of solutiong(E)

In the next section we are going to analyze this entropy in=x _q(E,m) [or the entropyS(E)=Ing(E)] for different
order to recover well-known results concerning bounds ofardinalities, we observe a fundamental difference between
the (E,m) curve for nearly optimal solutions. Through the Q=2 andQ>2 results(in Fig. 4 we show normalized
analysis of the entropy of the multipartitioning problem it entropies. For theQ=2 case, we see that the maximum of
will be clear that the change of complexity of this problem the entropy lies neaE=0.
for Q>2 is associated with fundamental changes of the en- |t js known that random movements in a statistical system
tropy curve. leads it, on average, to the region of maximum entropy,

where the number of accessible states is maximum. Since the

IV. NUMERICAL RESULTS maximum of the entropy lies approximately Bt=0 on the

Through the replica trick, Ferreira and Fontarj&{jihave
obtained analytical estimates for the average lower bound o 100
the energ)E as a function of magnetizatidicardinality dif-
ference m. By means of a simpler analysis, Mertdid] has
calculated lower and upper bounds for the endggyn). In
Fig. 2 we show our numerical results along with analytical
predictiong 8,11] for both lower and upper bounds B{m).

This is done by collapsing the axis of Fig. 1 on thex,y 095
plane[here, the E,m) pland. In order to compare our re-

sults with the theoretical ones, the energy is normalized ap-
propriately such that ah=1, e’ =0.5. It is important to note

that our numerical result concerns only one instance,
whereas the analytical results involve an average over atr
infinite number of instances.

In computer science one is mainly interested in optimal  °99 o 0.10 020
solutions, that is, the information contained on the first e
“slice” of the S(E,m) sur.face, theS(O,m) plane. In Fig. 3 FIG. 4. Normalized entropy of the system as a function of the
we showS(e,m), wheree is our numerical tolerance, which energye for different numbers of partition®, evidencing the dif-
we chose to beByax— Ewin)/1024. ferences in their maximum position. We consider an instance with

One interesting feature we have observed numerically i§20 numbers. The fundamental difference between bi- and multi-
that the maximum number of solutions does not occur folyartitioning is that for the latter the maximum of the entropy devi-

m=0; it is easier to find solutions where the number of ates from the origin, which turns out to be a minimum, making it

elements in each set is not exactly equal. This feature is nahore difficult to find nearly optimal solutions. The thin-dashed line

characteristic of a particular instance. is the normalized histogram of visits for a random spin-flip algo-
Now we show our results for the multipartitioning prob- rithm (Q=10).

o
™.,

s(e)

\ Q=

H(e), Q=10
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NPP, any algorithm which performs random movements will V. CONCLUSIONS

find reasonable solutions for such problem.
For Q>2 we have a completely different scenario. The

maximum of the entropy is not ne&r=0, indeedE=0 is a
minimum and the number of solutions wiEr~0 decreases,
at least, exponentially witlQ. Differently from the Q=2
case, an algorithm based on random movements would driv:
the system away from the ground state. In order to illustrat

We showed in this paper that the multicanonical method
for obtaining thermodynamic averages of statistical systems
can provide a tool for assessing the complexity of computer
science problems, such as the number partitioning problem
NPP. This problem is one of the six basic computer science
roblems, according to Garey and John§b®], and can be
) L . , ormulated as a spin-glass problem. Based on this analogy
thlg fact, we also show in Fig. 4 the normalized h_|stogram Ofwe proposed a statistical mechanics method for computing
visits for theQ=10 case, where 2:410° random flips were  he spectral degeneracy of the NPP problem which gives us
made on the spins. The effects of this behavior of the hformation about the number of solutions for a given d®st
entropy on the construction of new algorithms should beyng cardinality differencen. We have studied an extension
taken into account. Based on the traditional differencingys this problem forQ partitions and observed a fundamental
scheme[14-16 we can say that, if the number of nearly gitference between the classic) € 2) and the generalized
optimal solutions increases exponentially&s>0, it is al- (Q>2) NPP, which explains why it is so difficult to find
ways possible to find better and better solutions, the compu;goqd solutions for the latter case. This information can be

tational time spent on the search being the only barrier. Foery yseful in the construction of new algorithms.
the Q>2 NPP this kind of procedure does not seem to work

so efficiently, since the number of solutiodscrease&xpo-
nentially forE—0.
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